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NUMERICAL STUDIES OF NONLINEAR WAVE PROCESSES IN A LIQUID AND A 

DEFORMABLE SOLID DURING HIGH-SPEED IMPACT INTERACTION 

V. A. Petushkov UDC 532.529+539.4 

Problems of hydrodynamic shock loading of deformable bodies are most often encountered 
in the study and prevention of the erosional failure of structures interacting with a liquid. 
Among the structures that are subject to high-speed shock loading by liquid particles are 
turbine blades operating in moist vapor and elements of air and space craft flying in rain 
or entering bodies of water. Bodies immersed in a cavitating liquid are also subjected to 
shock-wave loading. The local pressures on the surface of solids involved in such interac- 
tions may exceed thousands of atmospheres [i]. There is yet another interesting aspect of 
such problems - the need to intensify the destructive effects achieved in the hydrodynamic 
extraction of minerals and fracture of rocks and the development of progressive new methods 
of cutting materials. 

In order to protect structures from failure and select the proper materials and coat- 
ings, it is necessary to perform a detailed analysis of their deformation and fracture with 
different rates of interaction with liquids. The capabilities of empirical methods are ex- 
tremely limited, since these interactions are of a drop- or jet-mediated nature (with the jets 
being of the shaped charge type) and are highly localized - with a duration measured in 
microseconds. The results that have been obtained through experimentation are for the most 
part qualitative. Only the ablation rate in such interactions provides quantitative data 
from such studies [i, 2]. The possibilities of theoretical investigations are even more 
limited. In mathematical modeling the high-speed impact interaction of bodies with a liquid, 
it is necessary to consider the compressibility of the media, the propagation of shock waves 
(SW) in them, the nonlinear behavior of the materials (dependent on the loading rate), and 
the resistance of the materials to plastic shears. The presence of the free surface of the 
liquid - which changes during the interaction - complicates the solution of the problem [2, 3]. 

Only a small number of studies [2, 4-6, etc.] have numerically investigated features of 
the nonlinear deformation and fracture of bodies in such interactions with a liquid. All of 
them are based on simplifying assumptions made relative to the behavior of the media. How- 
ever, as was noted in [7], the use of such assumptions makes it possible to determine fea- 
tures of flow in the liquid that are important in determining the loading, deformation, and 
mode of failure of the given body. The most thorough studies of the dynamics of a drop liquid 
were made in [7], although they were limited to modeling flows in a liquid in the case of a 
collision with a nondeformable surface. 

The present investigation, being a continuation of [8, 9], numerically examines wave 
processes in a drop liquid and a deformable body during their high-speed collision. The 
results are obtained with allowance for the above-mentioned features of the behavior of the 
media on the basis of the finite differences method and a through computing scheme of the 
Lachs-Vandroff predictor-corrector type. The Boris -Book flux correction method [i0] is 
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used to eliminate oscillations in the solution at the boundary of the contact discontinuity 
and shock-wave fronts in the liquid. 

i. Mathematical Model. Basic Equations�9 A liquid interacting with the surface of a 
deformable body at high speed will be examined in the form of small spherical particles. The 
proposed approach can also be used to study thin jets formed due to the collapse of cavita- 
tion bubbles in a liquid near the surface of a body and to examine the action of high-pres- 
sure nozzles. The forces from the liquid side will be assumed to be directed along a normal 
to the surface of the body. Ignoring the effect of surface tension and body forces in the 
liquid, we write the equations of unsteady motion of a compressible fluid in a two-dimensional 
axisymmetric approximation 

p , t ' - ~ - d i v g v  : 0 ,  (ov),  t q - d i . v ( ! ) v v - + - o ) = : 0 ,  (I.i) 

e , t - ~  div (e @-o)v  : O, (~'% t) ~ D,  ":Dr, ~ ~: 1, 2. 

Here, v ==(v~, z'~) is the velocity vector; x I and x 2 are the space coordinates (x 2 is the axis 
of symmetry); p is density; ~ :,- --pl; p is pressure; i is the unit tensor; e is the total 
energy per unit volume of the liquid [e = pg + (i/2)p(v~ + v~)]. 

Written in conservation form system (i.I) is closed by the equation of state 

p A(~)/#,, .... I) q-  E( t ' /P.  - -  t )  : ~ -  Upe, ( 1 . 2 )  

w h e r e  A,  B,  a n d  C a r e  c o e f f i c i e n t s  c h o s e n  on  t h e  b a s i s  o f  t h e  b e s t  a p p r o x i m a t i o n  o f  t h e  
Hugoniot curve. We take the results presented in [7] for water. Since high-pressure regions 
in the liquid may coexist with cavitation cavities formed under the influence of negative 
pressures, we augment the corrected equation of state as follows: 

]~=A(~V~ o- t)  at p ~ - - / ) , ,  p - =  Pz at p ~ i ) ,  (1.3) 

(p, is the maximum negative pressure that the liquid can withstand without loss of contin- 
uity. Its value for water does not exceed 28 MPa [7]). 

At the initial moment of time, the density, velocity, pressure, and energy of the liquid 
are determined by the relations 

P - ' t 'o ,  cl ( L  r~ = ~t~, V 14> r %. (1.4) 

At the surface of the contact discontinuity with the body being deformed, all data for which 
have index 2, we introduce the condition of continuous pressure and normalize the components 
of the velocity v: 

�9 ~'). = ~ % , ,  1,1~ ~ = / , I ? .  (1.5) 

By virtue of the local character of interaction with the liquid, the fact that the diam- 
eter of the drops is 2R, and the fact that the diameter of the jet usually is no greater than 
several millimeters, the body being deformed is usually examined in the form of a half-space 
with presumed axial symmetry undergoing a normal collision with the liquid. The body is re- 
garded as the most heavily damaged material in the collision. The boundaries of the theo- 
retical region occupied by the deformable medium are chosen at such a distance from the re- 
gion of impact with the liquid that perturbations which arise near these boundaries are not 
transmitted inside the region. We will describe the motion of the compressible deformable 
medium using Eqs. (i.i), but with allowance for the shear stresses. Here, the expression 
for the stress tensor o is 

ajj~ --l,A~i~ j S.ih (], Ic : 1, 2, 3) ( 1 . 6 )  

(Sjk is the stress deviator). The time derivatives of the components of the deviator in 
cylindrical coordinates appear as 

ON,j0~ 

0S2~/o/ 

05'00/8t 

i~,V12~St 

' ,) * 1 2 ~ ( & , , ' & "  m (I:',,)~81~8t), 

2t.~(O~,_/&: ~ 4- (I :3)98~/8t), 
" 2!t(tq,',~ 1. -!- (L'g)~)8[>/dt), 

u(&.h/8.r ~ -~. 8vJ,9.r ~) 

(1.7) 

and are used in the Jauman-Noll sense [ii] 

~'~ ~;u, - -  S;,~,i~ - -  N~:O,.i, ( i .  8 )  

where Sjk is the total derivative of the Cauchy stresses with respect to time; the vorticity 
tensor (--~ii: ~: (I/2)0'iu: -- ,%.j); ej,1~ :- &'fla:*:i~, ~i~ ~ D,. 
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As the equation of state for the spherical component of the stress tensor (1.6) - the 
hydrostatic pressure p - investigators usually use relations from the Mie-Gruneisen theory 

P(G e) : i~ 0 ,) ~ p+(< e) (1.9) 

(e : e+ + e ,  p+ :i>+/~:, p _ - - d e / d ~ ) .  

Here ,  F i s  t h e  G r u n e i s e n  c o e f f i c i e n t ;  p_ and e_ a r e  components  o f  t h e  p r e s s u r e  and e n e r g y  
a s s o c i a t e d  w i t h  c o l d  c o m p r e s s i o n  of  t h e  body;  p+ and e+ a r e  t h e  same, r e s p e c t i v e l y ,  w i t h  a l -  
lowance  f o r  t h e  h e a t i n g  o f  t h e  body;  v = V/0 i s  t h e  s p e c i f i c  volume.  

E q u a t i o n s  ( 1 . 9 )  a r e  e s t a b l i s h e d  from t e s t s  i n v o l v i n g  shock  c o m p r e s s i o n  [12] which  f o r  
most  m e t a l s  i n d i c a t e  a n e a r l y  l i n e a r  dependence  o f  F on v ,  i . e . ,  F(v)  = F0v /v  0. Below, we 
w i l l  r e s t r i c t  o u r s e l v e s  t o  t h e  s o - c a l l e d  q u a s i a c o u s t i c  a p p r o x i m a t i o n  - when p r e s s u r e  i s  a 
f u n c t i o n  o n l y  o f  volume and t he  H u g o n i o t  c u r v e  c o i n c i d e s  w i t h  t h e  i s e n t r o p i c  e x p a n s i o n .  Such 
an a p p r o x i m a t i o n  has  been e m p i r i c a l l y s u b s t a n t i a t e d  f o r  a f a i r l y  wide r a n g e  o f  p r e s s u r e s  a t  
SW f r o n t s ,  on t h e  o r d e r  o f  10-15 GPa [12,  13] .  I n  t h i s  r a n g e ,  t h e  i r r e v e r s i b i l i t y  o f  t he  
d e f o r m a t i o n  p r o c e s s e s  i s  due m a i n l y  t o  p l a s t i c  s h e a r  s t r a i n s .  

To e x p r e s s  t he  c o n n e c t i o n  between t h e  d e v i a t o r i c  components  o f  t he  s t r e s s e s  S jk  and 
strains ejk (ejk = ~jk - (i/3)r we will use relations from the theory of microplastic 
strains in the form in which they appeared in [13, 14]. Here, as in [15], we will generalize 
them to account for the effect of strain rate. In accordance with this approach, each ele- 
mentary volume of the body is assumed to consist of n ideal elastoplastic subelements having 
different yield points dependent on the loading rate: 

~vl~] = o~ ~) (~ + !C~ i?')~ k ~  ( i ,  ,), ( i . i 0 )  

where o is the static yield point of the k-th subelement; C and p are coefficients de- 
termined from stress-strain curves constructed for single loadings at different loading rates 
and, when necessary, different temperatures. All of the subelements are characterized by the 
same elastic moduli E and same total strain rates ~jk = (i/2)(vj,k + vk,j). Thus, for each 

[ < , (h)~2 ' 0 "~ ( h i \ 2  subelement k S?],. 2He;,. and ~, ;]: ; ~((-/+,)oio) . The total stress deviator at a point - in an 
elementary volume - is distributed with the corresponding weight factors P(k) between all n 
subelements, i.e., 

= O0 ~+" (i.ii) 
(k)= l  

We can s i m i l a r l y  r e p r e s e n t  the  t o t a l  d e v i a t o r  o f  p l a s t i c  s t r a i n  r a t e .  The we igh t  f a c t o r s  are 
de te rmined  on the bas i s  o f  a l i n e a r  a p p r o x i m a t i o n  o f  the  a b o v e - i n d i c a t e d  s t r e s s  - s t r a i n  

c u r v e s :  ~P'(/,.) : (IE~) (E/~ A'/. ,) where El+ (o~ 1+-1 h oi )/(~t k - l ,  while E qr,+ 'l. Such a de- 
h~l 

scription of the nonlinear behavior of materials makes it possible to account for ductility- 
property anisotropykand hysteresis losses due to plastic strains - although an additional 2n 
parameters Tk and o i are added to the existing expressions. As has been shown by nc~erical 
studies conducted for different structural metals, the optimum number of parameters is never 
greater than 8-16 subelements (four are usually sufficient) and can be established on the 
basis of histograms of the yield points of a material [16]. 

Conditions (1.5) are assigned at the boundary of the theoretical region ~,cD 2 {(x ~, x~): 
0~xt~3R;x ~ = O} (free surface or surface of contact discontinuity) of the deformable body. 
The following conditions are assigned on the remaining boundaries: 

7,,, = a t , d a x  t , , :  (I, C~", z ~) ~ S ~  .+ {.+,' : <), o ~ x 2 ~ 311}; 

a+,+/Ox, - :  a++/ax + o, (+L +9 + sm {~ ~ + ' <  3R, +~ = 3~}; ( 1 . 1 2 )  
ovl]'az t = a c 2 / a x :  +:0, (~'~, x P ~ S ~  : {z ~ : 3 ~ ,  O ~ z  + ~ 3 ~ } .  

The above  r e l a t i o n s  f o r  t h e  d e f o r m a b l e  body must be augmented by i n i t i a l  c o n d i t i o n s .  
The i n i t i a l  s t a t e  o f  t h e  body may e i t h e r  be s t r e s s - f r e e  o r  may i n c l u d e  " i n i t i a l "  s t r e s s e s  
f rom t h e  main s e r v i c e  load  ( p r e c e d i n g  t h e  l o a d i n g  by t h e  l i q u i d )  o r  p r o c e s s i n g .  As f o r  t he  
l i q u i d ,  we t a k e  i n i t i a l  c o n d i t i o n s  in  t h e  form 

p(x~, 0 ) =  p~ v~(~ ,  0 ) S ~ . ( ~ <  0 ) =  p(~,  0 ) =  0 
( 1 .13 )  

2. N u m e r i c a l  Methods of  S o l u t i o n  and T h e i r  S u b s t a n t i a t i o n .  We w i l l  use  t h e  f i n i t e  
d i f f e r e n c e s  method to  s o l v e  b o u n d a r y - v a l u e  p rob l ems  f o r  t h e  l i q u i d  and d e f o r m a b l e  body.  We 
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introduce two types of difference grids approximating DI, D2, and Dt: a three-dimensional 
371 ,i grid with constant steps h I and h2:Oh~ (i,x~): xj =x~ +jh~, x~=x2o +/ch2}; a grid on a time 

layer with the step ht: Ot~ {in: P' =:=: nht, n ~ Z,, ()~ nh t ~T}. We also construct the additional 

grids Dh(0, 1/2) and Dt(I/2) , having taken the middles of the sides of the initial grids as 
their nodes. The time grid O~'/~')~ {in+I/2: t "+I/'z =(n+ I/2)ht, t*~+I/2<T}. We use ~r(D) to represent 
the space of real grid functions assigned on D h and the corresponding boundary-value problems 
(1.1)-(1.5) for the liquid and (1.5)-(1.13) for the deformable solid. These problems can be 
represented in generalized divergent form 

W.t + div F ( W ) - :  S(W), ( 2 . 1 )  

w h e r e W ,  F(W) , and S(W) a r e  v e c t o r s ,  w h i l e  W = W(x% t), F = {F l, F2} and S = 0 f o r  t h e  
l i q u i d .  A l l  o f  t h e  v a r i a b l e s  e n t e r i n g  i n t o  t h e s e  v e c t o r s  a r e  h e n c e f o r t h  t a k e n  as d i m e n s i o n -  
less. As the characteristic quantities, we take the collision velocity u 0 the size of the 
incoming flow (drop) of liquid R, and the characteristics of the media p(11, p(=), c(1), c(2). 
The conservative form of system (2.1) makes it possible to obtain a solution on the basis of 
conservative finite-difference approximation schemes (on the above-introduced grid representa- 
tion) which automatically satisfy the Rankine-Hugoniot relations at shock-wave fronts. 

As an example of this approach, below we use the Lachs-Vandroff two-step predictor-cor- 
recter scheme [3]. This method includes an explicit time scheme and a central-difference 
space scheme. The time scheme is obtained by expansion into a Taylor series up to quantities 
of the second order. In the space scheme, the operators 8/~x I and 3/3x ~ are represented as 

A.Y- {x  1 O/Ox~-~ A/Ax% 8r(Dh)--~Sr(Dh(U2, 0)), A--~ j+,/2) = (~-(x~)--8r(x~))/h~, etc. Also, the relations 

1 ] (I/x~).3-(D)-~ :~-(D), (x~.S:')(x~, x~)= xj$r(xj, x~) are valid for the multiplication operators x l 
and i/x z-. Analogous expressions are valid for the operator (i/xl.). In constructing such 
schemes, the concept behind the Samarskii method of reference operators [17] is important 
for reproducing the basic theorems of vector analysis at the discrete level. 

As any other scheme of second-order accuracy, the Lachs-Vendroff scheme leads to non- 
physical distortions of the solution at the SW fronts and boundaries of contact discontinuity. 
These distortions cannot be removed (particularly in the latter case) through the use of 
structural and artificial viscosity. Thus, we use the Boris-Book algorithm [i0, 18, 19] for 
this purpose below. In the first stage - the transport stage - the Lachs-Vendroff method 
is used with the operator L [3] 

i,k = ~ j , k +  L.W" ( 2 . 2 )  

( j  and k d e n o t e  t h e  numbers o f  nodes  o f  t h e  d i f f e r e n c e  g r i d  on D h and n d e n o t e s  t h e  moment 
o f  t ime  on t h e  g r i d  D t ) .  The second  s t a g e  i s  d i f f u s i o n a l  and i n v o l v e s  t he  o p e r a t o r  D 

~ n + l  lffZn +1 D. W" j.h . . . .  j,.~ + ( 2 . 3 )  

for the values Wjh '~ and u:,+J,,j.k corresponding to the given time step. This stage corresponds 

to linear second-order damping, the operator for which (DW)A h := + I~j§ <Ds_T/~,~(W)], 

Here, the flux (Dj§ =: (~/4)(WI+L~ -- WI,~), while m is a positive constant, ~ ~ O(i). This 

approach significantly reduces oscillations at shock-wave fronts and in regions characterized 
by large gradients of the solution for(,)~ ]/2. However, there is also a reduction in the 
stability of the scheme to lol <~. (i -- o)/2)'/-'; for ~ = i/2, o <~_ 0.866. 

We will attempt to eliminate the effect of the diffusion stage on the transport stage 
by also introducing an anti-diffusion operator C(W) with a positive constraint factor q and 
the constraint operator A(W): 

(C(I~)-Wb, ~ = --{IA (I~) (D(W)1.~+ ,/~,h --  I(A (V~)~P(W)l~_~/~,~ }, ( 2 . 4 )  

where IA(~V)(D(W)[~+,/,,.~ == q~+~/~,~ rain {[(~?F7+2,~ -- ~F~+~.~)h, (I/q)[(W~,u -- ~Fj_~,~)/O~+a/~,~]+ }, while the 
a, a ~ O ,  

n o t a t i o n  [ a ] +  has  t h e  meaning [aL = O. 

The final form of the flux correction 

w n + l  r [ i ' ~ n + l ' ~  L,12. n ~,h ~ , ~  + C  (2 .5)  = k vv j , k  1'" v v j , h .  

Choos ing  f rom among t h e  s o l u t i o n s  o f  t h e  model  p rob lems  p r e s e n t e d  in  [ 1 8 - 2 1 ,  e t c .  ] ,  we t o o k  
0 .65  as t h e  v a l u e  o f  q t h a t  i s  optimum w i t h  r e s p e c t  t o  a c c u r a c y  and s t a b i l i t y .  Here ,  t h e  

268 



Fig. 1 

criterion of stability Iol~1. Thus, in a unidimensional problem involving contact and shock- 
wave discontinuities in a shock tube [18], use of the flux-correction method (2.2)-(2.5) with 
this value reduced the thickness of the shock-wave discontinuity from 4-6 cells of the theo- 
retical grid in the Lachs-Vendroff metod to 1-2 cells. The thickness of the contact discon- ' 
tinuity, meanwhile, was reduced from 6-8 to 4-5 cells. The solutions deviated from the exact 
values by no more than 1%. 

Similar studies of computing schemes have been conducted for other deformable media. 
The deviations of the solutions at SW fronts were no greater than 3% in the well-known Lamb 
problem on the incidence of a plane wave on a deformable half-space and in problems involving 
the impact of deformable bodies flying at different velocities against a rigid obstacle [22, 
23]. There was also good agreement of the features of the wave processes occurring during 
the period of deformation. The use of structural model (i.i0)-(i.ii) to describe plastically 
deformed media in such cases makes it possible to obtain closer agreement with empirical re- 
sults - particularly at high collision velocities - due to fuller accounting of the strain- 
hardening of the material and its dissipative properties. The accuracy of the calculations 
was checked by the satisfaction, with a specified relative error, of the energy balance over 
the entire volume of the deformed medium. 

For problems with a free surface, the position of this surface over time is an additional 
variable which is determined from the solution of the problem. On a Eulerian grid, the new 

positions of the boundary can be established in accordance with j,~+1 = i~,~ ~ii.~ ' A ~ 
L~)~At -- similar to the manner in which this was done in the MAC method [3]. To avoid in- 
stability of the free boundary, we will resort to its forced smoothing by a quadratic function 
of the radius. In the computing process, we first determine the internal hydrodynamic quan- 
tities. We then find the change in the boundaries. 

The solution of interaction problems was realized in succession: first for the liquid, 
then, with a time "lag," for the deformable solid. Such an approach has certain advantages 
[24]. The interaction effect is characterized by conditions (1.5). 

3. Impact Interaction of a Body with a Drop Liquid. We use the numerical schemes de- 
scribed above to calculate hydrodynamic flows in a spherical drop of liquid and the deforma- 
tion and fracture of the surface of a body in a collision occurring at the velocity M u~/ 
c (1) = 0.3. A drop of the diameter 2R = 2 mm, with a density p(1) and sonic velocity ]( 
equal to 103 kg/m 3 and 1300 m/sec, respectively, collides with a body -half-space made of an 
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aluminum alloy having the following properties: shear modulus p = 26.2 GPa; static yield 
point o 0 = 0.36 GPa, with the parameters C and p in Eq. (i.i0) equal to 0.0238 and 0.112; 
density p(2) = 2700 kg/m~; sonic velocity c (2) = 6430 m/sec; Lamg constant % = 50.8 GPa. 

It follows from Fig. 1 that complex hydrodynamic flows take place in the drop. Along 
with high-pressure regions, cavitation cavities are formed. Figure 1 shows isobars in frac- 
tions of o(Oc 2 where 0.i p(1)c~l ) t0, for successive moments of time t = tc(1)/R from 0.i to L (I), -= 
0.5. The last moment of time corresponds to the arrival of the SW at the free surface of 
the drop and the beginning of its intensive dispersion in the horizontal direction. The 
rate of dispersion agrees well with the experimental value and was reported in [7]. The 
peak pressures on the surface of the body are somewhat (up to 7%) lower than those obtained 
in [9] for a rigid surface. 

Figure 2 shows changes in the surface of the deformable body in the region of contact 
with the drop for different moments of time c The final form of the surface is denoted by 
the number 8 and corresponds to the moment t = tC/R = 3.0 from the beginning of loading [C = 
((% + 2p)/p) I/2 is the velocity of the longitudinal waves in the body]. The presence of such 
protuberances around erosional channels is clearly visible on the specimens subjected to drop 
loading (to the right in Fig. 3). When metal is subjected to repeated loading, the metal 
forced to the surface is carried off by liquid particles (the damaged surface of a structural 
element interacting with a drop medium is shown on the left). 
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The character of the stress states which develop in this case differs negligibly from 
the state obtained when it is assumed that the material behaves elastically [9] - somewhat 
lower levels of the stress components and the presence of the so-called elastic precursor. 
The velocity of the latter is greater than the velocity of the plastic wave front in the body. 
Figure 4 depicts the formation of plastic regions corresponding to the above-mentioned mo- 
ments of impact interaction. The solid and dot-dash lines represent identical levels of 
stress intensity. These values are equal to the dynamic yield point and half of this quantity 
for the same moments of time. The kinetics of the plastic zones depicted by the figure char- 
acterizes the regions of the greatest damage, being associated with the highest rates of 
damage accumulation in the body. Deformation and fracture of the material of the body occur 
simultaneously and have an effect on one another [25], although it is still not yet possible 
to account for this effect within the framework of a single mathematical model due to the 
large difference in the scale of the structures of the body in which these processes take 
place. The range of scales here is from 10-6-10 -4 to 102 m or more for actual structures. 
The porous-body models [26-27] used for this purpose are obviously too coarse. In the present 
case, the situation is further complicated by the fact that the processes involving deforma- 
tion and erosional fracture are of a repeating, cyclic character and are generally accom- 
panied by corrosion of the material. Curves of erosional fracture constructed for different 
drop velocities and sizes as a function of the unit mass lost by the specimen (Fig. 3), time, 
or the number of collisions also usually include an incubation period, stages of accelera- 
tion and deceleration, and a final stage in which the erosion rate is constant. The different 
stages are in turn characterized by different failure mechanisms. Meanwhile, the beginning 
of ablation is preceded by the formation of craters [28]. 

Hypotheses regarding the distribution of drops in a unit volume of the medium and sta- 
tistical models of fatigue failure are usually introduced to account for the statistical na- 
ture of the repeating shock loading and fracture of materials. More accurate results which 
make it possible to describe features of the erosional fracture curve can be obtained on the 
basis of a statistical model of ablation [29, 30]. The possibility of the formation of cracks 
or fracture zones during the initial (incubation) period was not considered in this model. 

As our failure criterion, we took the increase in stress intensity past the point corre- 
sponding to the intermediate stress o~ in relation to the loading rate (this point being 
taken with the sign of the maximum tensile stresses). Lines of equal damage in fractions 

s B of o~ are shown in Fig. 5. Line 3 is the stress inten ity equal to the breaking value o i 
for the given moment of loading reckoned from the beginning of the collision of the drop with 
the deformable body. The hatched region corresponds to the region in which failure can occur. 

Thus, we used methods of mathematical modeling that were developed to discover basic 
laws governing hydrodynamic flows in a drop and deformation processes in a body during their 
impact interaction. The formation and"collapse" of cavitation zones in the liquid intensi- 
fies fracture processes in the body. The deformation processes which take place within the 
body are quite nonlinear and depend on the loading rate. The character of the processes is 
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determined more by the accuracy of the description of the cyclic hysteresis properties of 
the material than by the descriptionof the strain-hardening properties. It is obvious that 
the above approaches can be generalized to the solution of other interaction problems of 
practical importance. 
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